Untersuchungen zur Diastereoselektivität beim O-Angriff von Elektrophilen auf β-Ketocarbonsäureester-Enolate

Volker Krause, Wolfgang Lauer und Herbert Meier*

Institut für Organische Chemie der Universität Mainz, J.-J.-Becher-Weg 18-22, D-6500 Mainz

Eingegangen am 14. März 1989

Key Word: Enolates, ambidospecifity, Z/E-diastereoselectivity

Aus den in reiner Form eingesetzten Z- oder E-Enolen $2\mathbf{a}-\mathbf{c}$ werden über die Enolatstufe $3\mathbf{a}-\mathbf{c}$ die O-alkylierten, -silylierten oder -acylierten Produkte $4\mathbf{aa}-\mathbf{ae}$, $4\mathbf{ba}$, **bf** und $4\mathbf{ca}$, **cc**, **cf** hergestellt. Im Gegensatz zu der vollständigen Regioselektivität hängt die Z/E-Diastereoselektivität dabei von den Substituenten in 2/3, dem verwendeten Elektrophil und den Reaktionsbedingungen ab. Insbesondere bei weichen Elektrophilen kann sich das Z/E-Verhältnis bei der Umsetzung $3 \rightarrow 4$ stark ändern.

Die Chemie der Enolate hat in den letzten Jahren in der organischen Synthese enorm an Bedeutung gewonnen; besonders hervorzuheben ist in diesem Zusammenhang dabei die stereoselektive Synthese. Primär spielen dabei zwei Gesichtspunkte eine Rolle, nämlich die C/O-Selektivität für den elektrophilen Angriff und die Enolatkonfiguration. Vor kurzem haben wir eine Untersuchung zur Konfigurationsstabilität von Enolaten aus β-Ketocarbonsäureestern 1 in Abhängigkeit von Substituenten, Gegen-Ionen, Medium und Temperatur durchgeführt¹⁾. Dazu eignen sich besonders Substanzen, die eine hohe sterische Energie aufweisen und dadurch den Vorteil bieten, in reiner Form 2 als Z- oder E-Enole oder beides eingesetzt werden zu können. Mit Alkalihydriden gelingt eine vollständige und irreversible Deprotonierung $2 \rightarrow 3$, bei der die Enolkonfiguration zunächst erhalten bleibt (kinetische Kontrolle). Danach kann sich, abhängig von den Bedingungen, ein Z/E-Gleichgewicht auf der Enolatstufe 3 einstellen (thermodynamische Kontrolle). Erste Ergebnisse¹⁾ für die Reaktionen mit Elektrophilen zeigten jedoch, daß die Konfiguration in den Produkten nicht direkt aus der Gleichgewichtslage hergeleitet werden kann, da E- und Z-Enolate ganz unterschiedliche Reaktivität gegenüber Elektrophilen besitzen können! Die Regioselektivität bei den hier untersuchten Systemen liegt vollständig auf der Seite des O-Angriffs. Selbst "weiche" Elektrophile²⁻⁴⁾ wie Iodmethan führen ausschließlich zu den O-Derivaten Z/E-4.

Quantentheoretische Rechnungen zeigen, daß in gewöhnlichen Keton-Enolaten der überwiegende Teil der negativen Ladung am O-Atom sitzt⁴): $Q_o/Q_c = 2.6$ bis 1.4. Bei den Enolaten von 1,3-Dicarbonylverbindungen verteilt sich die Ladung auf zwei O-Atome und ein C-Atom. Im Malondialdehyd-Anion erhält man nach MNDO-Rechnungen⁵) folgende Verhältnisse der Teilladungen:

On the Diastereoselectivity of the O-Attack of Electrophiles on Enolates from β -Ketocarboxylates

The O-alkylated, -silylated or -acylated derivatives 4aa - ae, 4ba, bf, 4ca, cc, cf of the pure Z or E enoles 2a - c are generated via the enolates 3a - c. In contrast to the complete regioselectivity, the Z/E diastereoselectivity depends on the substituents in 2/3, the applied electrophile and the reaction conditions. Especially for soft electrophiles the Z/E ratio can change significantly during the reaction $3 \rightarrow 4$.

$Q_{\rm O}/Q_{\rm C} = 0.85$	(ZZ)-Konformation
0.92	(ZE)-Konformation
0.91	(EE)-Konformation

Die negative Ladungsdichte ist also am Kohlenstoff etwas höher als an jedem der beiden Sauerstoffatome. Bei den Enolaten der ß-Ketocarbonsäureester drehen sich die Verhältnisse wieder um. Die größte negative Partialladung trägt der Enolatsauerstoff. Elektrophile greifen entweder dort oder am Kohlenstoffatom an, niemals jedoch am Estersauerstoff⁶⁻⁹. Bei den hier untersuchten Systemen 2/ 3a-c haben sterische Effekte einen entscheidenden Einfluß. Durch die aus der Doppelbindungsebene herausgedrehten voluminösen Reste R² wird der Angriff an C-2 so erschwert, daß er mit dem O-Angriff nicht konkurrieren kann. Das gilt für die elektronenschiebenden Mesitylreste genauso wie für die elektronenziehenden 2,4,6-Tribromphenylreste¹⁰! Die Umsetzung mit harten und weichen Elektrophilen verläuft also nicht orbitalkontrolliert sondern gleichsinnig ladungskontrolliert und sterisch kontrolliert.

Außer der Regioselektivität ist die Diastereoselektivität zu diskutieren. Wie früher untersucht¹), kommt man von den Enolen 2 je nach Reaktionsbedingungen zu konfigurationsreinen Enolaten 3, oder zu Gleichgewichten (Z/E)-3. Beim unsubstituierten Acetessigsäure-methylester (1, 2, 3 mit R¹ = CH₃, R² = H) erhält man dann bei der O-Acetylierung im System N(C₂H₅)₃/HMPT in 56 proz. Ausbeute ein Z/E-Gemisch im Verhältnis 1:15; bei THF als Solvens ist die Selektivität auf 1:1.65 herabgesetzt^{11,12}.

Zur Untersuchung der Frage inwieweit die Konfiguration der Enolate in den Systemen 3a-c bei der Alkylierung, Acylierung oder Silylierung am Sauerstoff erhalten bleibt, haben wir zunächst HMPT als Lösungsmittel und die Alkalikationen K⁺, Na⁺ und Li⁺ als Gegen-Ionen gewählt. Dieses Medium solvatisiert die Kationen so stark, daß sol-

vensgetrennte Ionenpaare zumindest im Gleichgewicht mit Kontaktionenpaaren und Aggregaten vorliegen. Mit zunehmender Kationengröße nimmt die Chelatisierungstendenz ab; dementsprechend beobachtet man bei der Bildung von Na[3a] und K[3a] aus (Z)-2a bereits einen Anteil von 10

bzw. 17% E-Enolat im Gleichgewicht¹⁾. Die Umsetzung mit Elektrophilen kann nun für die beiden Enolat-Konfigurationen unterschiedlich schnell ablaufen. Bei einem sich relativ rasch einstellenden Gleichgewicht (Z)-3a \rightleftharpoons (E)-3a führt das zu Produktverhältnissen (Z)-4a: (E)-4a, die stark vom Enolatgleichgewicht abweichen. In allen untersuchten Fällen (Tab. 1) entsteht ein größerer (E)-Anteil. Bei der Reaktion mit Iodmethan ist der E-konfigurierte Enolether (E)-4aa mit 68% sogar das Hauptprodukt. Offensichtlich greift das weiche Elektrophil CH₃I die E-Konfiguration von K[3a] sehr viel schneller an als die Z-Konfiguration. Die Größe des Elektrophils spielt dabei keine entscheidende Rolle. Mit n-Hexyliodid erhält man unter analogen Bedingungen ein Z: E-Verhältnis von 16:84¹³⁾. Bei der Silylierung und den Acylierungen zu 4ab-ae dominieren stets die Z-Konfigurationen. Diese härteren Elektrophile bevorzugen den Angriff am E-Enolat K[3a] oder Na[3a] nur mehr in abgeschwächter Form.

Genau wie 2a liegt das Enol 2b, das säulenchromatographisch vom Keton 1b abgetrennt wird¹, ausschließlich in Z-Konfiguration vor. Das Natrium-Enolat Na[3b] besitzt in HMPT allerdings schon überwiegend die E-Konfiguration. Die Derivatisierungen zu 4ba und 4bf zeigen wieder eine geringfügige Bevorzugung der E-Form; d.h. der Anteil an (E)-4ba bzw (E)-4bf ist etwas größer als der Anteil an (E)-3b.

Beim Enol 2c kann man die Z- oder die E-Konfiguration einsetzen. Das Gleichgewicht auf der Enolatstufe liegt in HMPT bei Kalium- oder Natrium-Gegen-Ionen ganz auf der E-Seite, bei Lithium-Gegen-Ionen ist das Z/E-Verhältnis 39:61. Die O-Alkylierungen, -Acylierungen und -Silylierungen ändern in der Reihe 2c im Rahmen des Meßfehlers nichts an der Z/E-Zusammensetzung. Als Resumee folgt aus Tab. 1, daß die Derivatisierung am Sauerstoffatom bei 3cdas Z/E-Verhältnis nicht und bei 3b nur wenig verändert;

Tab. 1. Diastereoselektivität bei der O-Alkylierung, -Acylierung und -Silylierung der Alkali-Enolate **3a**, b, c in HMPT

Eingesetztes Enol	Enolat	O-Derivate	Z: E-Verhältnis
(Z)-2a	K[3a]		83:17
		4 aa	32:68
		4ab	64:36
	Na [3a]		90:10
		4ac	71:29
		4ad	68:32
		4ae	68:32
(Z)- 2 b	Na[3b]		38:62
		4ba	33:67
		4bf	33:67
(Z)-2c	K[3c]		0:100
oder	2 3	4 ca	0:100
(<i>E</i>)- 2 c	Na[3c]		0:100
		4ca	0:100
		4cc	0:100
		4 cf	0:100
	Li[3c]		39:61
		4 ca	39:61

O-Angriff von Elektrophilen auf β-Ketocarbonsäureester-Enolate

bei **3a** können dagegen besonders mit weichen Elektrophilen starke Veränderungen auftreten. Unter den gegebenen Bedingungen hängt es also vom eingesetzten Enol, aber auch vom Elektrophil ab, wie hoch die Diasteroselektivität bei der Substitution am O-Atom ist. Eine völlige Konfigurationserhaltung ist in HMPT lediglich bei (*E*)-**2c**, eine vollständige Konfigurationsumkehr lediglich bei (*Z*)-**2c** jeweils mit Kalium- oder Natrium-Gegen-Ionen möglich.

Geht man bei der Reaktion von 2c von HMPT auf THF über, dann wird eine kinetisch kontrollierte Reaktionsführung möglich, da die Äquilibrierung auf der Enolstufe bei Raumtemperatur langsamer verläuft als der Angriff des Elektrophils. So kann man aus (Z)-2c über (Z)-K[3c] unmittelbar den reinen Methylether (Z)-4ca gewinnen¹⁴⁾. Erst nach einer Wartezeit von ca. 2 h hat sich das Gleichgewicht eingestellt, das praktisch ganz auf der (E)-Seite von K[3c] liegt. Die Abfangreaktion liefert dann reines (E)-4ca. Gibt man zwischenzeitlich Iodmethan zu, dann läßt sich jedes beliebige E/Z-Verhältnis erhalten. Ähnliche Ergebnisse erzielt man mit Na⁺-Gegen-Ionen. Die Einstellung des Gleichgewichts (Z)-Na[3c]:(E)-Na[3c] = 12:88 dauert ausgehend von (Z)-2c bei Raumtemperatur ca. 3 h. Die Umsetzung mit CH₃I liefert dann fast reines (E)-4ca. Die Lithium-Enolate von 2c sind in THF konfigurationsstabil. (Z)-Li[3c] liefert reines (Z)-4ca. Fügt man nachträglich zum Enolat HMPT bis zum Mischungsverhältnis THF: HMPT = 2:1 zu, dann stellt sich ein Gleichgewicht (Z)-

Li[3c]:(E)-Li[3c] = 80:20 ein, das bei der Reaktion mit Chlortrimethylsilan zu (Z)- und (E)-4cf im Verhältnis 72:28 führt. Die (E)-Form von Li[3c] ist in THF schwer löslich. Behandelt man den suspendierten Cluster mit Elektrophilen, so entstehen die reinen (E)-Produkte. Synthetisch bietet also das Arbeiten in THF den größeren Spielraum im Hinblick auf die Diastereoselektivität bei der O-Alkylierung, -Silylierung und -Acylierung von 2c.

Die Geschwindigkeit der Enolat-Isomerisierung im Zusammenspiel von Aggregation, Kontakt-Ionenpaarbildung und Beteiligung solvensgetrennter Ionen ist jedoch eine sehr komplexe Variable, die beim Wechsel des Mediums von HMPT zu THF nicht grundsätzlich abzunehmen braucht. Ein schönes Gegenbeispiel ist Na[3b]. Das in Tab. 1 angegebene Gleichgewicht (Z)-Na[3b]:(E)-Na[3b] = 38:62läßt sich in THF NMR-spektroskopisch nicht ermitteln. Man beobachtet bei Raumtemperatur lediglich eine Enolatspezies, erst bei -80°C erkennt man eine zur Signalaufspaltung führende Verbreiterung in der Protonenresonanz. Aus den Abfangreaktionen mit CH₃I oder (CH₃)₃SiCl folgt jedoch, daß auch in THF ein Z/E-Gleichgewicht auf der Enolatstufe vorliegen muß. In beiden Fällen erhält man 2:1-Gemische aus den E- und Z-Formen der Produkte 4ba und **4bf.** In THF ist also die Umwandlung (Z)-Na $[3b] \rightleftharpoons (E)$ -Na [3b] bei Raumtemperatur schnell im Sinn der NMR-Zeitskala. In HMPT wird das erst beim Erwärmen erreicht. Die Koaleszenztemperatur für die Singuletts der aromati-

Tab. 2. ¹H-NMR-Daten von 4aa-ae, 4ba, bf und 4aa-cc, cf (δ-Werte in CDCl₃, bezogen auf TMS als int. Standard)

		Me	sitvl			
	CO ₂ CH ₃	o-CH ₃	p-CH ₃	<i>m</i> -H	Phenyl/tert-Butyl	R ³
(Z)-4aa	3.71	2.10	2.20	6.71	7.09-7.20	3.60 (CH ₃)
(E)-4aa	3.42	2.25	2.30	6.92	7.37-7.49	3.29 (CH ₃)
(Z)-4ab	3.68	2.15	2.20	6.72	7.00 - 7.20	$0.05 [Si(CH_3)_2], 0.92 [C(CH_3)_3]$
(E)-4ab	3.42	2.22	2.25	6.85	7.35 - 7.40	-0.65 [Si(CH ₃) ₂], 0.45 [C(CH ₃) ₃]
(Z)-4ac	3.67	2.11	2.24	6.79	7.05-7.19	2.31 (CH ₃)
(E)-4ac	3.52	2.28	2.28	6.88	7.33 - 7.50	1.75 (CH ₃)
(Z)-4ad	3.67	2.14	2.23	6.78	7.03-7.19	1.35 [C(CH ₃) ₃]
(E)-4 ad	3.55	2.32	2.27	6.87	7.36 - 7.52	$0.85 [C(CH_3)_3]$
(Z)-4ae	3.59	2.20	2.27	6.83	7.11 - 7.21	7.51 (m-H), 7.63 (p-H), 8.21 (o-H)
(E)- 4 ae	3.57	2.42	2.18	6.82	7.30 - 7.50	7.45 - 7.68 (m, p-H), 7.74 (o-H)
(Z)-4 ba	3.67	2.26	2.24	6.80	0.91	3.81 (CH ₃)
(E)- 4 ba	3.61	2.24	2.25	6.84	1.25	3.08 (CH ₃)
(Z)- 4 bf	3.59	2.28	2.25	6.80	0.90	$0.31 [Si(CH_3)_3]$
(<i>E</i>)- 4 bf	3.59	2.21	2.24	6.81	1.25	-0.24 [Si(CH ₃) ₃]
(Z)-4 ca	3.67	2.06	2.14	6.64		3.39 (CH ₃)
		2.12	2.17	6.67		
(E)- 4 ca	3.46	2.30	2.33	6.95		$3.26 (CH_3)$
		2.34	2.34	6.96		
(Z)-4cb	3.66	2.08	2.15	6.62		-0.10 [Si(CH ₃) ₂], 0.91 [C(CH ₃) ₃]
		2.10	2.15	6.66		
(<i>E</i>)-4cb	3.46	2.28	2.28	6.86		-0.33 [Si(CH ₃) ₂], 0.49 [C(CH ₃) ₃]
		2.35	2.29	6.87		
(Z)-4cc	3.70	2.06	2.17	6.68		$2.18 (CH_3)$
		2.16	2.18	6.70		
(<i>E</i>)-4 cc	3.50	2.32	2.28	6.87		1.73 (CH ₃)
		2.45	2.29	6.88		
(Z)-4cf	3.67	2.04	2.16	6.63		$0.05 [Si(CH_3)_3]$
· · •	• • •	2.08	2.16	6.66		
(<i>E</i>)-4cf	3.49	2.31	2.33	6.90		-0.20 [Si(CH ₃) ₃]
		2.38	2.33	6.91		

Tab. 3. ¹³C-NMR-Daten von 4aa-ae, 4ba, bf und 4ca-cc, cf (δ-Werte in CDCl₃, bezogen auf TMS als int. Standard)

					$\mathbf{R}^1, \mathbf{R}^2$			CU	• CH		R ³
	C-1	C-2	C-3	OCH ₃	Cq,ipso	C _{q,o}	C _p		<i>0</i> -CH ₃	<i>p</i> -CH ₃	
(Z)-4aa	168.1	116.2	160.6	51.7	131.6 133.7	137.4	129.1 137.0	127.9 128.3 128.6	20.1	21.0	59.1 (CH ₃)
(E)- 4 aa	168.3	111.6	165.0	51.3	131.9 134.6	136.9	129.2 136.6	128.1 128.3 128.7	20.0	21.1	57.1 (CH ₃)
(Z)-4ab	167.5	114.0	157.1	51.4	132.3 136.7	137.6	128.5 138.1	127.2 128.0 128.1	20.3	21.0	-4.1 [Si(CH ₃) ₂], 18.4 [C(CH ₃) ₃], 25.7 (C _q)
(<i>E</i>)-4 ab	168.0	113.6	161.7	51.2	132.1 136.3	136.9	128.7 138.6	127.8 127.9 128.5	20.0	21.0	-4.2 [Si(CH ₃) ₂], 17.7 [C(CH ₃) ₃], 24.8 (C _q)
(Z)-4ac	166.5	121.2	152.3	52.1	130.7 134.6	137.1	129.4 137.6	127.7 127.9 128.5	19.9	21.1	20.9 (CH ₃), 168.8 (CO)
(E)- 4ac	167.4	123.7	154.4	51.9	130.2 135.2	137.1	129.5 137.4	128.1 128.2 128.3	19.8	21.1	20.4 (CH ₃), 167.8 (CO)
(Z)-4ad	166.6	121.7	151.5	52.0	130.9 134.7	137.2	129.1 137.6	127.6 127.8 128.5	20.0	21.1	27.1 [C(CH ₃) ₃], 39.1 (C _q), 176.0 (CO)
(E)- 4 ad	167.3	123.5	154.5	51.9	130.3 135.2	137.2	129.4 137.2	128.0 128.1 128.2	19.7	21.0	26.3 [C(CH ₃) ₃], 38.7 (C _q) 175.5 (CO)
(Z)-4ae	166.5	121.8	151.9	52.1	130.8 134.5	137.2	129.4 137.7	127.7 128.0 128.6	20.0	21.1	128.6 (C_m), 130.3 (C_o) 133.5 (C_p), 129.5 (C_i) 164.8 (CO)
(E)-4ae	167.4	123.8	154.3	52.0	129.1 135.1	136.9	129.4 137.4	128.1 128.2 128.3	19.9	21.0	128.4 (C_m), 129.8 (C_o) 133.3 (C_p), 129.5 (C_i) 163.6 (C_o)
(Z)- 4 ba	169.0	114.7	169.5	51.9	132.4 39.8	137.5	136.9	128.0 28.5	20.6	21.0	62.6 (CH ₃)
(E)- 4 ba	169.2	113.6	170.2	51.6	132.8 39.2	137.6	136.9	128.5 28.5	20.3	21.0	60.0 (CH ₃)
(Z)-4bf	169.2	112.6	161.1	51.4	132.7 39.0	138.2	136.8	127.9 28.8	20.2	20.9	1.6 [Si(CH ₃) ₃]
(E)- 4 bf	170.4	113.1	162.3	51.4	133.2 38.5	138.1	136.7	128.5 28.9	20.2	20.9	0.4 [Si(CH ₃) ₃]
(Z)-4ca	168.4	116.7	160.6	51.5	129.0 130.8	137.4 137.8	136.4 138.3	128.4 128.6	20.5 20.7	20.9 21.0	56.3 (CH ₃)
(E)-4 ca	167.4	110.4	165.2	51.3	130.7 131.8	135.7 137.1	136.4 138.3	128.2 128.4	20.4 20.8	21.1 21.2	55.1 (CH ₃)
(Z)-4 cb	168.1	117.5	155.9	51.3	131.1 133.6	136.3 137.9	136.3 137.6	128.3 128.4	20.6 20.9	20.9 20.9	-4.3 [Si(CH ₃) ₂], 18.2 (C _q), 25.8 [C(CH ₃) ₃]
(<i>E</i>)- 4 cb	167.4	114.3	161.8	51.2	132.4 134.8	135.4 136.9	136.1 137.8	128.0 128.4	20.6 20.9	20.9 21.1	-4.5 [Si(CH ₃) ₂], 17.7 (C _q), 24.8 [C(CH ₃) ₃]
(Z)-4cc	168.5	125.0	153.2	52.0	129.5 130.2	137.3 137.5	137.2 138.6	128.6 128.8	20.2 20.6	20.7 20.9	20.9 (CH ₃), 166.7 (CO)
(<i>E</i>)-4 cc	167.1	124.9	156.3	51.9	130.4 131.3	136.9 137.3	137.2 138.6	128.3 128.5	20.5 20.5	21.0 21.1	20.5 (CH ₃), 166.2 (CO)
(Z)-4cf	168.3	117.7	156.9	51.3	131.3 133.4	136.4 137.8	136.3 137.8	128.4 128.7	20.5 20.9	20.9 20.9	0.3 [Si(CH ₃) ₃]
(E)- 4 cf	167.6	114.5	161.1	51.1	132.3 134.9	135.3 136.8	135.9 137.7	127.8 128.3	20.4 20.7	21.0 21.1	0.4 [Si(CH ₃) ₃]

O-Angriff von Elektrophilen auf β-Ketocarbonsäureester-Enolate

schen Protonen liegt bei 25°C, die Singulettsignale der tert-Butylgruppen koaleszieren sogar erst bei 60°C. Daraus läßt sich eine freie Aktivierungsenthalpie von ca. 60 kJ/mol abschätzen.

Die hier durchgeführten Untersuchungen zeigen also, daß der Einfluß des Mediums auf die Konfigurationsänderung vom jeweiligen Enolat abhängt. Die Diastereoselektivität bei O-Substitutionen hängt von der kinetisch oder thermodynamisch kontrollierten Enolatbildung ab, aber auch von den verwendeten Elektrophilen. Insbesondere weiche Elektrophile können zu E/Z-Isomerenverteilungen in den Produkten führen, die vom Enolatgleichgewicht stark abweichen!

Ein alternativer Weg zur Herstellung der O-Substitutionsprodukte der Enole besteht in der Umsetzung von 2 in Dichlormethan/Triethylamin. Zugabe von Chlortrimethylsilan oder tert-Butylchlordimethylsilan führt unter vollständiger Konfigurationserhaltung zu den entsprechenden Silvlethern. Dabei fällt auf, daß die E-Enole eine wesentlich höhere Reaktivität besitzen als die Z-Enole: (E)-2c setzt sich bei Raumtemperatur in 10 min quantitativ um, während (Z)-2c erst nach ca. 90 min einen 90 proz. Umsatz erreicht.

Präparativ wertvoll ist dieses Verfahren vor allem in der Z-Reihe, da man dort sonst mit dem in THF schwerlöslichen Lithiumcluster arbeiten muß, um Z/E-Gemische oder sogar die vollständige Umwandlung in die E-Konfiguration zu vermeiden.

Die ¹H-NMR-spektroskopische Verfolgung des Reaktionsablaufs $2 \rightarrow 3 \rightarrow 4$ zeigt, daß in allen hier beschriebenen Fällen quantitative Umsetzungen eintreten. Nicht immer gelingt jedoch eine säulenchromatographische Isomerentrennung (vgl. Experimentalteil). Zur Zuordnung von Eund Z-Konfigurationen eignen sich die Kernresonanzspektren. In Tab. 2 ist eine Zusammenstellung der ¹H-NMR-Daten gegeben. Besonders charakteristisch ist die Hochfeldverschiebung für die \mathbb{R}^3 -Gruppen beim Gang von Z nach E. Sie wird für alle hier untersuchten Reste (Alkyl, Acyl oder Silyl) beobachtet. Auch in den ²⁹Si- und in den ¹³C-NMR-Spektren findet man diesen Trend - wenn auch in abgeschwächter Form. Die ¹³C-NMR-Daten sind in Tab. 3 zusammengefaßt. Der deutlichste Verschiebungseffekt $\Delta\delta$ zwischen Z- und E-Konfigurationen tritt beim C-3-Signal auf, das bei den E-Isomeren um 1-5 ppm tieffeldverschoben ist.

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Experimenteller Teil

IR-Spektren: In KBr oder reiner Phase, Beckman Acculab 4. -¹H-, ¹³C- und ²⁹Si-NMR-Spektren: In [D₈] THF, [D₁₈] HMPT oder CDCl₃, Bruker AM 400. - Massenspektren: 70 eV Ionisierungsenergie, MAT 711 und CH 7A der Firma Varian. - Schmelzpunkte sind unkorrigiert. Herstellung der Enole 2a - c nach Lit.¹⁵.

Allgemeine Vorschrift zur Bildung der Enolate und ihrer Umsetzung mit Elektrophilen. -a) In HMPT: 1.0 mmol Enol (Z)-2a, (Z)-**2b**, (Z)-**2c** oder (E)-**2c** werden in 15 ml wasserfreiem HMPT¹⁶⁾ mit 1.2-1.5 mmol Lithium-, Natrium- oder Kaliumhydrid versetzt. Man rührt unter Feuchtigkeitsausschluß bei Raumtemperatur bis sich das Gleichgewicht der Enolatstufe eingestellt hat (NMR-Messung) und gibt dann 2.0 mmol wasserfreies Elektrophil zu (a: Iodmethan, b: tert-Butylchlordimethylsilan, c: Acetylchlorid, d: Pivaloylchlorid, e: Benzoylchlorid, f: Chlortrimethylsilan). Nach ca. 2stdg. Rühren kühlt man auf 0°C ab und extrahiert die Reaktionsmischung zweimal mit je 50 ml Petrolether (Sdp. 40-60°C)/Wasser (2:1) oder mit 2 \times 50 ml Ether/Wasser (1:1). Im Fall der Silverbindungen empfiehlt sich die Verwendung einer ges. Natriumhydrogencarbonat-Lösung, wobei man den Kontakt mit der wäßrigen Phase möglichst kurz (unter 1 min) halten sollte. Die mit MgSO₄ getrocknete organische Phase wird an einer Kieselgelsäule (80 \times 2.5 cm) mit Dichlormethan chromatographiert. Bei den Silylverbindungen ist eine Flash-Chromatographie vorzuziehen.

b) In THF: Die Umsetzungen in THF¹⁶ werden analog durchgeführt, wobei man den Zeitpunkt der Elektrophil-Zugabe je nach gewünschter Konfiguration (vgl. allgemeinen Teil) wählt. Nur für Na[3b] gilt das nicht, da sich in diesem Fall das Gleichgewicht bei Raumtemperatur sofort einstellt. Die Aufarbeitung erfolgt wie im Fall a).

c) In $CH_2Cl_2N(C_2H_5)_3$: 400 mg (1.18 mmol) (Z)- oder (E)-3c werden in 10 ml CH₂Cl₂ gelöst und mit 0.5 ml (3.58 mmol) wasserfreiem Triethylamin versetzt. Dazu gibt man bei Raumtemperatur unter Rühren und Feuchtigkeitsausschluß 0.5 ml (6.38 mmol) Chlortrimethylsilan oder 452 mg (3.0 mmol) tert-Butylchlordimethylsilan zu. Nach beendeter Reaktion (10 min bei E-3c, ca. 2 h bei Z-3c) kühlt man auf 0° C ab und gibt unter Schütteln 4 ml einer ges. NaHCO₃-Lösung und 10 ml Pentan hinzu. Nach spätestens 1 min wird die organische Phase abpipettiert und mit MgSO₄ getrocknet. Zur weiteren Reinigung führt man an einer Kieselgelsäule $(2.5 \times 18 \text{ cm})$ eine Flash-Chromatographie mit CH₂Cl₂ durch. Die Bestimmung der E/Z-Verteilung wird ¹H-NMR-spektroskopisch vor der Trennung durchgeführt.

(Z)- und (E)-3-Methoxy-3-phenyl-2-(2,4,6-trimethylphenyl)-2propensäuremethylester (4aa): 1. Fraktion: (Z)-Isomeres, Reinausb. 31%, farblose Kristalle, Schmp. 72°C. – IR (KBr): $\tilde{v} = 2920$ cm⁻¹, 2850, 1705, 1600, 1440, 1215, 1095, 700. - MS (70 eV): m/z (%) = 310 (63) [M⁺⁺], 279 (20), 278 (47), 220 (26), 219 (100), 192 (17), 105 (25), 77 (28).

C20H22O3 (310.4) Ber. C 77.42 H 7.10 Gef. C 77.54 H 7.07

2. Fraktion: (E)-Isomeres, Reinausb. 66%, farblose Kristalle: Schmp. 94°C. – IR (KBr): $\tilde{v} = 2940 \text{ cm}^{-1}$, 1700, 1610, 1585, 1430, 1290, 1180, 1095, 850, 785, 760, 700. -MS(70 eV): m/z(%) = 310(63), 279 (17), 278 (50), 220 (24), 219 (100), 105 (23), 77 (23).

C₂₀H₂₂O₃ (310.4) Ber. C 77.42 H 7.10 Gef. C 77.43 H 7.15

(Z)- und (E)-3-(tert-Butyldimethylsilyloxy)-3-phenyl-2-(2,4,6trimethylphenyl)-2-propensäure-methylester (4ab): 1. Fraktion: (Z)-Isomeres, Reinausb. 62%, farblose, viskose Flüssigkeit. - IR (rein): $v = 2925 \text{ cm}^{-1}$, 2900, 2840, 1700, 1590, 1580, 1430, 1325, 1240, 1210, 1100, 1000, 825, 775, 690. -MS(70 eV): m/z(%) = 353(74) $[M - C_4H_9]^+$, 219 (17), 205 (29), 186 (36), 131 (18), 115 (20), 105 (100).

C25H34O3Si (410.6) Ber. C 73.17 H 8.29 Gef. C 73.40 H 8.21

B

1723

2. Fraktion: (E)-Isomeres, Reinausb. 35%, farblose, viskose Flüssigkeit. – IR (rein): $\tilde{v} = 2940 \text{ cm}^{-1}$, 2920, 2860, 1710, 1610, 1590, 1300, 1250, 1225, 1100, 1040, 840, 780, 700. – MS (70 eV): m/z $(\%) = 353 (100) [M - C_4H_9]^+, 263 (15), 220 (14), 219 (17), 205$ (22), 105 (27).

C₂₅H₃₄O₃Si (410.6) Ber. C 73.17 H 8.29 Gef. C 72.71 H 8.41

(Z)- und (E)-3-Acetoxy-3-phenyl-2-(2,4,6-trimethylphenyl)-2propensäure-methylester (4ac): 1. Fraktion: (Z)-Isomeres, Reinausb. 69%, farblose Kristalle, Schmp. 81°C. – IR (KBr): $\tilde{v} = 2940 \text{ cm}^{-1}$, 2900, 1765, 1710, 1620, 1250, 1210, 1200, 1190, 1090, 1070, 1015. -MS (70 eV): m/z (%) = 338 (17) [M^{+•}], 296 (38), 264 (52), 186 (32), 105 (100).

C21H22O4 (338.4) Ber. C 74.56 H 6.51 Gef. C 75.08 H 6.59

2. Fraktion: (E)-Isomeres, Reinausb. 28%, farblose Kristalle, Schmp. 85°C. – IR (KBr): $\tilde{v} = 2950 \text{ cm}^{-1}$, 1760, 1705, 1620, 1445, 1430, 1365, 1310, 1295, 1215, 1190, 1060, 1045, 1030, 760, 700. -MS (70 eV): m/z (%) = 338 (7) [M⁺⁺], 296 (36), 264 (51), 185 (36), 105 (100).

C21H22O4 (338.4) Ber. C 74.56 H 6.51 Gef. C 74.32 H 6.56

(Z)- und (E)-3-Phenyl-3-pivaloyloxy-2-(2,4,6-trimethylphenyl)-2-propensäure-methylester¹⁷ (4ad): Ausb. 97%, farblose, vikose Flüssigkeit¹⁸⁾. – IR (rein): $\tilde{v} = 2960 \text{ cm}^{-1}$, 2900, 1730, 1710, 1625, 1230, 1200, 1100, 1080. - MS (70 eV): m/z (%) = 380 (29) [M⁺⁺], 296 (34), 264 (79), 186 (32), 105 (97), 77 (40), 57 (100).

C24H28O4 (380.5) Ber. C 75.79 H 7.37 Gef. C 75.08 H 7.42

(Z)- und (E)-3-Benzoyloxy-3-phenyl-2-(2,4,6-trimethylphenyl)-2-propensäure-methylester (4ae)¹⁷: Ausb. 97%, farblose, viskose Flüssigkeit¹⁹⁾. – IR (rein): $\tilde{v} = 2950$ cm⁻¹, 2920, 1735, 1710, 1600, 1445, 1430, 1260, 1225, 1205, 1085, 1050, 1020, 710. - MS (70 eV): m/z (%) = 400 (23) [M⁺⁺], 105 (100), 77 (70).

C₂₆H₂₄O₄ (400.5) Ber. C 78.00 H 6.00 Gef. C 77.45 H 5.95

(Z)- und (E)-3-Methoxy-4,4-dimethyl-2-(2,4,6-trimethylphenyl)-2-pentensäure-methylester (4ba): 1. Fraktion: E-Isomeres, Reinausb. 65%, farbloses Öl. – IR (rein): $\tilde{v} = 2940 \text{ cm}^{-1}$, 2900, 1705, 1600, 1470, 1450, 1420, 1270, 1240, 1220, 1115, 1045, 850, 780. - MS (70 eV): m/z (%) = 290 (77) [M^{+•}], 259 (31), 243 (28), 202 (100), 173 (53), 147 (25).

C18H26O3 (290.4) Ber. C 74.45 H 9.02 Gef. C 74.39 H 9.10

2. Fraktion: Z-Isomeres: Reinausb. 32%. farblose Kristalle, Schmp. 64°C. – IR (rein): $\tilde{v} = 2980 \text{ cm}^{-1}$, 2960, 2910, 1705, 1600, 1470, 1280, 1230, 1180, 1140, 1040, 1000, 850. - MS (70 eV): m/z $(\%) = 290 (75) [M^{+*}], 259 (26), 243 (21), 202 (100), 173 (56), 143$ (26).

C18H26O3 (290.4) Ber. C 74.45 H 9.02 Gef. C 74.36 H 8.92

(Z)- und (E)-4,4-Dimethyl-2-(2,4,6-trimethylphenyl)-3-(trimethylsilyloxy)-2-pentensäure-methylester¹⁷ (**4bf**): Ausb. 98%, Z: E =33:67 (aus ¹H-NMR-Spektrum). Außer den ¹H- und ¹³C-NMR-Daten wurde eine Molmassenbestimmung mit GC/MS (HRGC 5160, Carlo Erba, 25-m-Kapillarsäule SE 52, Stickstoff als Trägergas/MAT 700 Ion Trap, Finnigan) durchgeführt: $M^{+} : m/z = 348$, $[M + H]^+: m/z = 349.$

C₂₀H₃₂O₃Si (348.6) Ber. C 68.92 H 9.25 Gef. C 68.92 H 9.25

Die Verbindungen (Z)- und (E)-3-Methoxy-2,3-bis(2,4,6-trimethylphenyl)-2-propensäure-methylester[(Z)-4ca und(E)-4ca],(Z)-und (E)-3-Acetoxy-2,3-bis(2,4,6-trimethylphenyl)-2-propensäure-methylester [(Z)-4cc und (E)-4cc] und (Z)- und (E)-2,3-Bis(2,4,6trimethylphenyl)-3-(trimethylsilyloxy)-2-propensäure-methylester [(Z)-4cf und (E)-4cf] wurden bereits in der vorangehenden Arbeit¹⁾ beschrieben und hier durch Spektrenvergleich identifiziert.

(Z)-3-(tert-Butyldimethylsilyloxy)-2,3-bis(2,4,6-trimethylphenyl)-2-propensäure-methylester [(Z)-4cb): Reinausb. aus (Z)-2c nach Methode c: 71%; farblose Kristalle, Schmp. 106°C. - IR (KBr): $\tilde{v} = 2940 \text{ cm}^{-1}$, 2920, 2850, 1715, 1600, 1460, 1430, 1280, 1220, 1160, 1085, 1000, 845, 775. -MS(70 eV): m/z(%) = 452(1) $[M^{+*}]$, 396 (100) $[M - C_4H_9]^+$, 186 (10), 147 (26), 88 (11). $-^{29}$ Si-NMR (CDCl₃): $\delta = 21.3$.

C₂₈H₄₀O₃Si (452.7) Ber. C 74.29 H 8.91 Gef. C 74.18 H 8.86

(E)-3-(tert-Butyldimethylsilyloxy)-2,3-bis(2,4,6-trimethylphenyl)-2-propensäure-methylester [(E)-4cb]: Reinausb. aus (E)-2c nach Methode c: 98%, farblose Kristalle, Schmp. 149°C. – IR (KBr): $\tilde{v} \approx 2950 \text{ cm}^{-1}$, 2920, 2860, 1700, 1600, 1580, 1460, 1420, 1280, 1220, 1170, 1100, 970, 840, 780. - MS (70 eV): m/z (%) = 452 (4) [M⁺⁺], 395 (100) [M - C₄H₉]⁺, 261 (17), 73 (26). - ²⁹Si-NMR (CDCl₃): $\delta = 20.3$.

C₂₈H₄₀O₃Si (452.7) Ber. C 74.29 H 8.91 Gef. C 74.50 H 8.88

CAS-Registry-Nummern

(Z)-2a: 112794-65-7 / (Z)-2b: 112794-66-8 / (Z)-2c: 95694-48-7 / (E)-2c: 95694-47-6 / (Z)-4aa: 112794-80-6 / (E)-4aa: 112794-81-7 / (Z)-4ab: 120263-22-1 / (E)-4ab: 120263-23-2 / (Z)-4ac: 120263-24'3 / (E)-4ac: 120263-25-4 / (Z)-4ad: 120263-26-5 / (E)-4ad: 120263-27-6 / (Z)-4ae: 120263-28-7 / (E)-4ae: 120263-29-8 / (Z)-**4ba**: 120263-30-1 / (E)-**4ba**: 120263-31-2 / (Z)-**4bf**: 120263-32-3 / (E)-**4bf**: 120263-33-4 / (Z)-**4ca**: 112794-78-2 / (E)-**4ca**: 112794-79-3 / (Z)-**4cb**: 120263-34-5 / (E)-**4cb**: 120263-35-6 / (Z)-**4cc**: 112794-76-0/(E)-4 cc: 112794-77-1/(Z)-4 cf: 112794-74-8/(E)-4 cf: 112794-75-9

- ¹⁾ H. Meier, W. Lauer, V. Krause, Chem. Ber. 121 (1988) 1109.
- ²⁾ Zum Hart-Weich-Prinzip vgl. R. G. Pearson, Hard and Soft Acids and Bases Principle in Organic Chemistry, Academic Press, New York 1972.
- ³⁾ Zum Allopolarisierungsprinzip vgl. R. Gompper, H.-U. Wagner, Angew. Chem. 88 (1976) 389; Angew. Chem. Int. Ed. Engl. 15 (1976) 321.
- ⁴⁾ Zu O/C-Selektivität bei ambidenten Enolat-Anionen vgl. R. Gompper, H.-H. Vogt, Chem. Ber. 114 (1981) 2866 und R. Gompper, H.-H. Vogt, H.-U. Wagner, Z. Naturforsch., Teil B. 36 (1981) 1644.
- ⁵⁾ H. Kolshorn, unveröffentlichte Ergebnisse.
- ⁶⁾ A. L. Kurts, A. Macias, I. P. Beletskaya, O. A. Reutov, Tetrahedron Lett. 1971, 3037.
- ⁷⁾ A. L. Kurts, A. Macias, I. P. Beletskaya, O. A. Reutov, Tetrahedron 27 (1971) 4759.
- ⁸⁾ A. L. Kurts, P. Í. Demyanov, A. Macias, I. P. Beletskaya, O. A. Reutov, Tetrahedron 27 (1971) 4769.
- A. L. Kurts, N. K. Genkina, A. Macias, I. P. Beletskaya, O. A. Reutov, Tetrahedron 27 (1971) 4777.
- ¹⁰⁾ H. Wengenroth, Diplomarbeit, Mainz 1988.
- ¹¹⁾ C. P. Casey, D. F. Martin, Tetrahedron Lett. 1974, 925.
- ¹²⁾ Zur Reaktionsführung mit bevorzugter Z-Selektivität vgl. auch R. Fillner, S. M. Nagui, Tetrahedron 19 (1963) 879.
- ¹³⁾ V. Krause, unveröffentlichte Ergebnisse.
- ¹⁴ Das trifft auch für (Z)-2a zu.
 ¹⁵ H. Meier, W. Lauer, V. Krause, Chem. Ber. 119 (1986) 3382; H. Meier, W. Lauer, F. U. Scholter, Angew. Chem. 97 (1985) 352; Angew. Chem. Int. Ed. Engl. 24 (1985) 350.
- ¹⁶⁾ Zur NMR-spektroskopischen Kontrolle der Reaktion stellt man eine Lösung gleicher Konzentration in dem perdeuterierten Solvens her.
- ¹⁷⁾ Säulenchromatographische Trennung nicht möglich.
- ¹⁸⁾ Die in THF oder Diethylether zugängliche reine (Z)-Form schmilzt bei 104°C. 19)
- Die in THF oder Diethylether zugängliche reine (Z)-Form schmilzt bei 112°C.

[81/89]